4.7 Review

The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives

Journal

JOURNAL OF ADVANCED RESEARCH
Volume 43, Issue -, Pages 59-71

Publisher

ELSEVIER
DOI: 10.1016/j.jare.2022.03.002

Keywords

Virus inactivation; Physical techniques; Reactive species; Atmospheric plasma

Ask authors/readers for more resources

This review critically examines methods for generating reactive oxygen species (ROS) and explores their potential as a solution for virus deactivation. The study highlights the ability of ROS to directly eradicate pathogens through oxidative stress and indirectly through non-oxidative mechanisms. Additionally, the novel and environmentally friendly cold plasma delivery system for virus destruction is discussed in detail.
Background: Outbreaks of airborne viral infections, such as COVID-19, can cause panic regarding other severe respiratory syndrome diseases that may develop and affect public health. It is therefore necessary to develop control methods that offer protection against such viruses.Aim of Review: To identify a feasible solution for virus deactivation, we critically reviewed methods of generating reactive oxygen species (ROS), which can attack a wide range of molecular targets to induce antiviral activity, accounting for their flexibility in facilitating host defense mechanisms against a com-prehensive range of pathogens. Recently, the role of ROS in microbial decontamination has been critically investigated as a major topic in infectious diseases. ROS can eradicate pathogens directly by inducing oxidative stress or indirectly by promoting pathogen removal through numerous non-oxidative mecha-nisms, including autophagy, T-cell responses, and pattern recognition receptor signaling.Key scientific concepts of review: In this article, we reviewed possible methods for the in vitro generation of ROS with antiviral activity. Furthermore, we discuss, in detail, the novel and environmentally friendly cold plasma delivery system in the destruction of viruses. This review highlights the potential of ROS as therapeutic mediators to modernize current techniques and improvement on the efficiency of inactivat-ing SARS-CoV2 and other viruses. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available