4.6 Article

FOXC1 Binds Enhancers and Promotes Cisplatin Resistance in Bladder Cancer

Journal

CANCERS
Volume 14, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14071717

Keywords

FOXC1; chromatin accessibility; drug resistance; enhancer activation; bladder cancer

Categories

Funding

  1. Tower Cancer Research Foundation 2018 Career Development Award
  2. Conquer Cancer Foundation of the American Society of Clinical Oncology/Nebraska Oncology Society - National Institute of Health [K01CA229995, R21CA260082, R21HG011686, R21CA264637]
  3. Department of Defense [W81XWH-21-1-0805]
  4. USC Norris Comprehensive Cancer Center Genomic and Epigenomic Regulation Grant - National Cancer Institute [R01CA257610, R01CA172436, P30CA014089]
  5. Kure It Foundation
  6. Coull Foundation
  7. Hope Foundation

Ask authors/readers for more resources

This research found that in bladder cancer, the transcription factor FOXC1 promotes the shift towards cisplatin resistance by binding accessible enhancers, even without mutational events. Targeting FOXC1 may be a new therapeutic approach to mitigate cisplatin resistance and improve treatment efficacy in bladder cancer.
Simple Summary In bladder cancer, cisplatin remains the front-line therapy, but drug resistance is common. Previously, we showed that cancer cells can spontaneously convert to an aggressive drug-resistant phenotype without mutational events. In the current work, we explored the epigenetic mechanism behind the conversion to the drug-resistant phenotype. We discovered that drug-resistant cells have differentially accessible enhancers, which are bound by FOXC1, a transcription factor that is overexpressed in these cells. Accordingly, FOXC1 knockout significantly attenuates the emergence of the drug-resistant phenotype and reduces cell survival upon cisplatin treatment. These findings suggest that FOXC1 binding at accessible enhancers promotes cisplatin drug resistance in bladder cancer cells. Therefore, FOXC1 targeting may be a new therapeutic avenue to mitigate cisplatin resistance and improve treatment efficacy in bladder cancer. Chemotherapy resistance is traditionally attributed to DNA mutations that confer a survival advantage under drug selection pressure. However, in bladder cancer and other malignancies, we and others have previously reported that cancer cells can convert spontaneously to an aggressive drug-resistant phenotype without prior drug selection or mutational events. In the current work, we explored possible epigenetic mechanisms behind this phenotypic plasticity. Using Hoechst dye exclusion and flow cytometry, we isolated the aggressive drug-resistant cells and analyzed their chromatin accessibility at regulatory elements. Compared to the rest of the cancer cell population, the aggressive drug-resistant cells exhibited enhancer accessibility changes. In particular, we found that differentially accessible enhancers were enriched for the FOXC1 transcription factor motif, and that FOXC1 was the most significantly overexpressed gene in aggressive drug-resistant cells. ChIP-seq analysis revealed that differentially accessible enhancers in aggressive drug-resistant cells had a higher FOXC1 binding, which regulated the expression of adjacent cancer-relevant genes like ABCB1 and ID3. Accordingly, cisplatin treatment of bladder cancer cells led to an increased FOXC1 expression, which mediated cell survival and conversion to a drug-resistant phenotype. Collectively, these findings suggest that FOXC1 contributes to phenotypic plasticity by binding enhancers and promoting a mutation-independent shift towards cisplatin resistance in bladder cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available