4.6 Article

Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker

Journal

CANCERS
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14102421

Keywords

cancer-related fatigue; anthracyclines; quality of life; circadian; sleep

Categories

Funding

  1. Dutch Cancer Society KWF [11356]

Ask authors/readers for more resources

Cancer-related fatigue (CRF) is a devastating long-term side effect that greatly affects the quality of life of cancer survivors. This study suggests that CRF may be caused by a dysfunctioning circadian clock, rather than changes in sleep. Additionally, the type of chemotherapy provided can influence the development of CRF. These findings have implications for selecting and improving chemotherapy to prevent CRF in cancer treatment.
Simple Summary Cancer-related fatigue (CRF) is a devastating side effect of cancer treatment, affecting the quality of life of many patients for years after treatment. This long-term side effect often results in loss of social functioning and even job loss. The cause of CRF is unknown, and consequently, CRF is often considered a 'psychological problem', much to the frustration of the patients. Here, we show in an animal model that the severity of CRF depends on the working mechanism of the treatment. In addition, the data show that the CRF is probably caused by a dysfunctioning circadian clock and thus has a physiological basis, as this effect depends on the anticancer drug. Therefore, the findings may have implications for the selection of chemotherapy and thus strongly improve the quality of life of future cancer survivors. Cancer-related fatigue (CRF) is the most devastating long-term side effect of many cancer survivors that confounds the quality of life for months to years after treatment. However, the cause of CRF is poorly understood. As a result, cancer survivors, at best, receive psychological support. Chemotherapy has been shown to increase the risk of CRF. Here, we study therapy-induced fatigue in a non-tumor-bearing mouse model with three different topoisomerase II-poisoning cancer drugs. These drugs either induce DNA damage and/or chromatin damage. Shortly before and several weeks after treatment, running wheel activity and electroencephalographic sleep were recorded. We show that doxorubicin, combining DNA damage with chromatin damage, unlike aclarubicin or etoposide, induces sustained CRF in this model. Surprisingly, this was not related to changes in sleep. In contrast, our data indicate that the therapy-induced CRF is associated with a disrupted circadian clock. The data suggest that CRF is probably a circadian clock disorder that influences the quality of waking and that the development of CRF depends on the type of chemotherapy provided. These findings could have implications for selecting and improving chemotherapy for the treatment of cancer in order to prevent the development of CRF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available