4.6 Review

Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice

Journal

CANCERS
Volume 14, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14092102

Keywords

triple-negative breast cancer; immunotherapy; biomarkers; immune checkpoints inhibitors; treatment; resistance

Categories

Ask authors/readers for more resources

Triple-negative breast cancer has historically been considered difficult to treat, with chemotherapy as the main treatment option. However, recent advances in genomics and immunology have led to the development of novel therapeutic strategies, such as immunotherapy, to enhance immune response and overcome drug resistance in TNBC. It is crucial to identify more sensitive biomarkers in the field of breast cancer immune oncology to improve patient outcomes.
Simple Summary Triple-negative breast cancer has been historically considered an orphan disease in terms of therapeutic options. To date, chemotherapy is still the mainstay of treatment both in the early and metastatic settings. Recent advances in the genomic and immunologic fields have revealed the molecular complexity and the immune profile of this breast cancer subtype, resulting in the development of novel therapeutic strategies, including immunotherapy. This review provides a comprehensive overview of the immune system and the different immunotherapeutic drugs approved or under investigation for the treatment of triple-negative breast cancer, with a focus on the potential strategies to enhance immune responses and overcome mechanisms of resistance. Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a cold tumor, exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available