4.6 Article

Radiolabeled Antibodies for Cancer Imaging and Therapy

Journal

CANCERS
Volume 14, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14061454

Keywords

radioimmunotherapy; radioisotopes; radiolabeled monoclonal antibodies; theranostics

Categories

Funding

  1. Victorian Government Department of Health and Human Services acting through the Victorian Cancer Agency
  2. NHRMC Investigator Fellowship [1177837]
  3. National Health and Medical Research Council of Australia [1177837] Funding Source: NHMRC

Ask authors/readers for more resources

Monoclonal antibodies have the unique ability to target tumor-cell antigens, making them useful in delivering radioisotopes to tumor sites and in radioimmunotherapy. While the treatment of solid tumors remains challenging, various strategies are being investigated to improve the efficacy of radioimmunotherapy.
Simple Summary Monoclonal antibodies (mAbs) have the ability to specifically target tumor-cell antigens. This unique property has led to their use in the delivery of radioisotopes to tumor sites (scintigraphic imaging and radioimmunotherapy (RIT)). The choice of the radionuclide depends on its unique physical properties and intended use. Using radiolabeled mAbs with imaging techniques provides critical data that are essential for predicting side effects and determining an optimal antibody dose and treatment schedule. While RIT has been successful in the management of hematological malignancies, the treatment of solid tumors remains challenging. Various strategies are being investigated to improve the efficacy of RIT in solid tumors. Radioimmunoconjugates consist of a monoclonal antibody (mAb) linked to a radionuclide. Radioimmunoconjugates as theranostics tools have been in development with success, particularly in hematological malignancies, leading to approval by the US Food and Drug Administration (FDA) for the treatment of non-Hodgkin's lymphoma. Radioimmunotherapy (RIT) allows for reduced toxicity compared to conventional radiation therapy and enhances the efficacy of mAbs. In addition, using radiolabeled mAbs with imaging methods provides critical information on the pharmacokinetics and pharmacodynamics of therapeutic agents with direct relevance to the optimization of the dose and dosing schedule, real-time antigen quantitation, antigen heterogeneity, and dynamic antigen changes. All of these parameters are critical in predicting treatment responses and identifying patients who are most likely to benefit from treatment. Historically, RITs have been less effective in solid tumors; however, several strategies are being investigated to improve their therapeutic index, including targeting patients with minimal disease burden; using pre-targeting strategies, newer radionuclides, and improved labeling techniques; and using combined modalities and locoregional application. This review provides an overview of the radiolabeled intact antibodies currently in clinical use and those in development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available