4.8 Article

Soft robotic origami crawler

Journal

SCIENCE ADVANCES
Volume 8, Issue 13, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abm7834

Keywords

-

Funding

  1. National Science Foundation (NSF) Career Award [CMMI-2145601]
  2. NSF [CMMI-1538830, CMMI-2142789]
  3. Brazilian National Council for Scientific and Technological Development (CNPq) [235104/2014-0]

Ask authors/readers for more resources

Researchers have developed a magnetically actuated small-scale origami crawler with inplane contraction, which can crawl and steer in confined spaces. This crawler has magnetically tunable structural stiffness, allowing it to overcome large resistances, and it has the ability to store and release drugs internally, demonstrating its multifunctionality.
Biomimetic soft robotic crawlers have attracted extensive attention in various engineering fields, owing to their adaptivity to different terrains. Earthworm-like crawlers realize locomotion through in-plane contraction, while inchworm-like crawlers exhibit out-of-plane bending-based motions. Although in-plane contraction crawlers demonstrate effective motion in confined spaces, miniaturization is challenging because of limited actuation methods and complex structures. Here, we report a magnetically actuated small-scale origami crawler with inplane contraction. The contraction mechanism is achieved through a four-unit Kresling origami assembly consisting of two Kresling dipoles with two-level symmetry. Magnetic actuation is used to provide appropriate torque distribution, enabling a small-scale and untethered robot with both crawling and steering capabilities. The crawler can overcome large resistances from severely confined spaces by its anisotropic and magnetically tunable structural stiffness. The multifunctionality of the crawler is explored by using the internal cavity of the crawler for drug storage and release. The magnetic origami crawler can potentially serve as a minimally invasive device for biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available