4.4 Article

Persistence and material coherence of a mesoscale ocean eddy

Journal

PHYSICAL REVIEW FLUIDS
Volume 7, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.7.034501

Keywords

-

Funding

  1. Australian Government
  2. Australian Government Research Training Program Scholarship
  3. ARC Discovery Project
  4. Australian Research Council (ARC) [LP170100498, CE170100023]
  5. Australian Research Council [LP170100498] Funding Source: Australian Research Council

Ask authors/readers for more resources

This study proposes a method to study the multiple-timescale material transport and mixing processes of ocean eddies. The method can identify and track eddy features, and reveals that their material transport is much larger than traditionally observed.
Ocean eddies play an important role in the transport and mixing processes of the ocean due to their ability to transport material, heat, salt, and other tracers across large distances. They exhibit at least two timescales: an Eulerian lifetime associated with persistent identifiable signatures in gridded fields such as vorticity or sea-surface height and multiple Lagrangian or material coherence timescales that are typically much shorter. We propose a method to study the multiple-timescale material transport, leakage, and entrainment by eddies with their surroundings by constructing sequences of finite-time coherent sets, computed as superlevel sets of dominant eigenfunctions of dynamic Laplace operators. The dominant eigenvalues of dynamic Laplace operators defined on time intervals of varying length allows us to identify a maximal coherence timescale that minimizes the rate of mass loss over a domain per unit flow time. We apply the method to examine the persistence and material coherence of an Agulhas ring, an ocean eddy in the South Atlantic ocean, using particle trajectories derived from a 0.1 degrees global numerical ocean simulation. Using a sequence of sliding windows, the method is able to identify and track a persistent eddy feature for a time much longer than the maximal coherence timescale and with considerably larger material transport than the corresponding eddy feature identified from purely Eulerian information. Furthermore, the median residence times of fluid in the identified feature far exceed the timescale over which fully material motion is guaranteed. Through residence time calculations, we find that this particular eddy does not exhibit a long-lived coherent inner core and that the bulk of material transport is performed by the quasi-coherent outer ring of the eddy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available