4.5 Article

Construction of recombinant baculovirus vaccines for Newcastle disease virus and an assessment of their immunogenicity

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 231, Issue -, Pages 201-211

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2016.03.037

Keywords

Newcastle disease virus; F gene; HN gene; Baculovirus expression vector system; Immunogenicity

Funding

  1. National Natural Science Foundation of China [31470537, 31270534, 31270143]
  2. National Science Foundation for Distinguished Young Scholars of China [31570492]
  3. Innovation Team in Science and Technology of Heilongjiang Province (the Fermentation Technology of Agricultural Microbiology) [2012td009]

Ask authors/readers for more resources

Newcastle disease (ND) is a lethal avian infectious disease caused by Newcastle disease virus (NDV) which poses a substantial threat to China's poultry industry. Conventional live vaccines against NDV are available, but they can revert to virulent strains and do not protect against mutant strains of the virus. Therefore, there is a critical unmet need for a novel vaccine that is safe, efficacious, and cost effective. Here, we designed novel recombinant baculovirus vaccines expressing the NDV For HN genes. To optimize antigen expression, we tested the incorporation of multiple regulatory elements including: (1) truncated vesicular stomatitis virus G protein (VSV-GED), (2) woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), (3) inverted terminal repeats (ITRs) of adeno-associated virus (AAV Serotype II), and (4) the cytomegalovirus (CMV) promoter. To test the in vivo efficacy of the viruses, we vaccinated chickens with each construct and characterized the cellular and humoral immune response to challenge with virulent NDV (F48E9). All of the vaccine constructs provided some level of protection (62.5-100% protection). The F-series of vaccines provided a greater degree of protection (87.5-100%) than the HN-series (62.5-87.5%). While all of the vaccines elicited a robust cellular and humoral response subtle differences in efficacy were observed. The combination of the WPRE and VSV-GED regulatory elements enhanced the immune response and increased antigen expression. The ITRs effectively increased the length of time IFN-gamma, IL-2, and IL-4 were expressed in the plasma. The F-series elicited higher titers of neutralizing antibody and NDV-specific IgG. The baculovirus system is a promising platform for NDV vaccine development that combines the immunostimulatory benefits of a recombinant virus vector with the non-replicating benefits of a DNA vaccine. (C) 2016 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available