4.7 Article

Strain dependency of dynamic recrystallization during thermomechanical processing of Mg-Gd-Y-Zn-Zr alloy

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2022.02.120

Keywords

GWZ magnesium alloys; LPSO; Dynamic recrystallization; Thermomechanical processing; Microtexture

Funding

  1. Commonwealth Campuses Research Collaboration through the office of the Vice President for Commonwealth Campuses (OVPCC)
  2. Materials Research Institute (MRI, Pennsylvania State University)

Ask authors/readers for more resources

The microstructure and microtexture changes of an extruded and annealed magnesium alloy were investigated under different strain and processing conditions. The results showed that the material underwent noticeable refinement even at low applied compressive strain. Recrystallization process was completed at a true strain of 0.3, and grain refinement was attributed to the LSN and CDRX mechanisms. At higher strain levels, most grains were found in deformed states and the microtexture only changed in terms of intensity.
The microstructure and microtexture of an extruded and annealed GWZ (Mg-8.2Gd-3.6Y-1.6Zn-0.5Zr, wt.%) magnesium alloy was recorded strain by strain in the course of thermomechanical processing. The specimens were compressed down to various interruption strains of 0.1, 0.3, and 0.5 under the strain rate of 0.001 s(-1) at 400 degrees C, the temperature at which the material was capable to be recrystallized extensively. Appreciable refinement was recognized even at low imposed compressive strain of 0.1, and the recrystallization process was completed at true strain 0.3 where the mean grain size of 4.3 mm was attained. The LPSO stimulated nucleation (LSN) and conventional continuous dynamic recrystallization (CDRX) mechanism were contributed in grain refinement. Consequently, the initial basal texture was considerably weakened which was mainly ascribed to the formation of RE-texture components. At higher imposed strain of 0.5, the majority of grains were found in deformed states, the capability of strain softening was decreased and the microtexture only changed in respect of intensity compared with true strain of 0.3. These indicated that the imposed strain was mainly accommodated through dislocation multiplication and tangling within the previously recrystallized grains. Complementary, the slip/twin activity, and the sequence of strain accommodation was investigated through Schmid analysis of the various systems. (C) 2022 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available