4.5 Article

Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
Volume 127, Issue 6, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022JE007189

Keywords

aerosol structure; Uranus; Neptune

Funding

  1. United Kingdom Science and Technology Facilities Council [ST/S000461/1, ST/R000980/1, 80NM0018D0004]
  2. National Aeronautics and Space Administration (NASA)
  3. NASA
  4. Space Telescope Science Institute (STScI) [NAS5-26555]
  5. European Research Council Consolidator Grant
  6. European Union [723890, PID2019-109467GB-I00Z, MCIN/AEI/10.13039/501100011033]
  7. NSF's NOIRLab
  8. National Science Foundation (United States)
  9. National Research Council (Canada)
  10. Agencia Nacional de Investigacion y Desarrollo (Chile)
  11. Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil)
  12. Korea Astronomy and Space Science Institute (Republic of Korea)
  13. NASA IRTF telescopes within the Maunakea Science Reserve, adjacent to the summit of Maunakea

Ask authors/readers for more resources

This article presents a reanalysis of visible/near-infrared observations of Uranus and Neptune, revealing a common model of the vertical aerosol distribution and providing a simulation of the spectral characteristics of dark spots.
We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3-2.5 mu m) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at similar to 0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately snow out (as predicted by Carlson et al. (1988), ), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of dark spots, such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available