4.6 Review

Design Strategies for Large Current Density Hydrogen Evolution Reaction

Journal

FRONTIERS IN CHEMISTRY
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2022.866415

Keywords

electrochemical hydrogen evolution; electrochemical catalyst; hydrogen evolution reaction; intrinsic activity; architecture design

Funding

  1. National Natural Science Foundation of China [11875230]
  2. Natural Science Foundation of Jiangsu Province [BK20210076]

Ask authors/readers for more resources

Hydrogen energy is considered a promising alternative to fossil fuel due to its clean combustion product. Developing water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for industrial applications is crucial. This review summarizes the latest advancements in non-noble electrocatalysts for high current density hydrogen evolution reaction (HER) and discusses design strategies and architecture design.
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H-2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm(-2)), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H-2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process, in situ characterization to reveal the micro mechanism, and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available