4.7 Article

Cloaked near-field probe for non-invasive near-field optical microscopy

Journal

OPTICA
Volume 9, Issue 7, Pages 684-691

Publisher

Optica Publishing Group
DOI: 10.1364/OPTICA.449216

Keywords

-

Categories

Funding

  1. European Research Council [340438-CONSTANS]
  2. Air Force Office of Scientific Research [FA9550-19-1-0043]

Ask authors/readers for more resources

Near-field scanning optical microscopy is a powerful technique for imaging below the diffraction limit. In this study, a cloaked near-field probe is designed and fabricated by controlling and balancing its electric and magnetic polarizabilities through nanostructuring. The probe-induced perturbations are largely suppressed, allowing for non-invasive near-field optical microscopy of classical and quantum nanosystems.
Near-field scanning optical microscopy is a powerful technique for imaging below the diffraction limit, which has been extensively used in biomedical imaging and nanophotonics. However, when the electromagnetic fields under measurement are strongly confined, they can be heavily perturbed by the presence of the near-field probe itself. Here, taking inspiration from scattering-cancellation invisibility cloaks, Huygens-Kerker scatterers, and cloaked sensors, we design and fabricate a cloaked near-field probe. We show that, by suitably nanostructuring the probe, its electric and magnetic polarizabilities can be controlled and balanced. As a result, probe-induced perturbations can be largely suppressed, effectively cloaking the near-field probe without preventing its ability to measure. We experimentally demonstrate the cloaking effect by comparing the interaction of conventional and nanostructured probes with a representative nanophotonic structure, namely, a 1D photonic-crystal cavity. Our results show that, by engineering the structure of the probe, one can systematically control its back action on the resonant fields of the sample and decrease the perturbation by >70% with most of our modified probes, and by up to 1 order of magnitude for the best probe, at probe-sample distances of 100 nm. Our work paves the way for non-invasive near-field optical microscopy of classical and quantum nanosystems. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available