4.6 Article

Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs)

Journal

JOURNAL OF ADVANCED CERAMICS
Volume 11, Issue 4, Pages 545-555

Publisher

SPRINGER
DOI: 10.1007/s40145-021-0554-2

Keywords

transition metal carbide (TMC); high-entropy ceramics; electromagnetic (EM) wave absorption; dielectric and magnetic loss coupling; ultra-broadband absorption

Funding

  1. National Natural Science Foundation of China [51972089, 51672064, U1435206]

Ask authors/readers for more resources

This study aims to realize electromagnetic wave absorption materials with ultra-broadband absorption capacity and good stability by designing and synthesizing high-entropy transition metal carbides. The results show that excluding certain elements or introducing new elements can improve impedance matching and enhance absorption performance.
Electronic devices pervade everyday life, which has triggered severe electromagnetic (EM) wave pollution. To face this challenge, developing EM wave absorbers with ultra-broadband absorption capacity is critically required. Currently, nano-composite construction has been widely utilized to realize impedance match and broadband absorption. However, complex experimental procedures, limited thermal stability, and interior oxidation resistance are still unneglectable issues. Therefore, it is appealing to realize ultra-broadband EM wave absorption in single-phase materials with good stability. Aiming at this target, two high-entropy transition metal carbides (HE TMCs) including (Zr,Hf,Nb,Ta)C (HE TMC-2) and (Cr,Zr,Hf,Nb,Ta)C (HE TMC-3) are designed and synthesized, of which the microwave absorption performance is investigated in comparison with previously reported (Ti,Zr,Hf,Nb,Ta)C (HE TMC-1). Due to the synergistic effects of dielectric and magnetic losses, HE TMC-2 and HE TMC-3 exhibit better impedance match and wider effective absorption bandwidth (EAB). In specific, the exclusion of Ti element in HE TMC-2 endows it optimal minimum reflection loss (RLmin) and EAB of -41.7 dB (2.11 mm, 10.52 GHz) and 3.5 GHz (at 3.0 mm), respectively. Remarkably, the incorporation of Cr element in HE TMC-3 significantly improves the impedance match, thus realizing EAB of 10.5, 9.2, and 13.9 GHz at 2, 3, and 4 mm, respectively. The significance of this study lays on realizing ultra-broadband capacity in HE TMC-3 (Cr, Zr, Hf, Nb, Ta), demonstrating the effectiveness of high-entropy component design in tailoring the impedance match.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available