4.6 Article

Rare earth monosilicates as oxidation resistant interphase for SiCf/SiC CMC: Investigation of SiCf/Yb2SiO5 model composites

Journal

JOURNAL OF ADVANCED CERAMICS
Volume 11, Issue 5, Pages 702-711

Publisher

SPRINGER
DOI: 10.1007/s40145-021-0560-4

Keywords

silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiCf/SiC CMC); interphase; rare earth (RE) silicates; interfacial parameters

Funding

  1. National Key R&D Program of China [2017YFB0703201]
  2. National Natural Science Foundation of China [51772302]
  3. CAS International Cooperation Key Program [174321KYSB20180008]

Ask authors/readers for more resources

In this study, SiC fiber and Yb2SiO5 composites were processed using the Spark Plasma Sintering (SPS) method. Different types of interfaces were achieved by adjusting the sintering temperature. It was found that the thermal expansion mismatch between Yb2SiO5 and SiC led to high interface stress, and the high temperature and electric field also had an effect on the interface. The study suggests that introducing the Yb2Si2O7-Yb2SiO5 phase can adjust the interfacial parameters and optimize the mechanical properties of the material.
Model composites consisting of SiC fiber and Yb2SiO5 were processed by the spark plasma sintering (SPS) method. The mechanical compatibility and chemical stability between Yb2SiO5 and SiC fiber were studied to evaluate the potential application of Yb monosilicate as the interphase of silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiCf/SiC CMC). Two kinds of interfaces, namely mechanical and chemical bonding interfaces, were achieved by adjusting sintering temperature. SiCf/Yb2SiO5 interfaces prepared at 1450 and 1500 V exhibit high interface strength and debond energy, which do not satisfy the crack deflection criteria based on He-Hutchison diagram. Raman spectrum analyzation indicates that the thermal expansion mismatch between Yb2SiO5 and SiC contributes to high compressive thermal stress at interface, and leads to high interfacial parameters. Amorphous layer at interface in model composite sintered at 1550 V is related to the diffusion promoted by high temperature and DC electric filed during SPS. It is inspired that the interfacial parameters could be adjusted by introducing Yb2Si2O7-Yb2SiO5 interphase with controlled composition to optimize the mechanical fuse mechanism in SiCf/SiC CMC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available