4.7 Article

The amelioration of alcohol-induced liver and intestinal barrier injury by Lactobacillus rhamnosus Gorbach-Goldin (LGG) is dependent on Interleukin 22 (IL-22) expression

Journal

BIOENGINEERED
Volume 13, Issue 5, Pages 12650-12660

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2022.2070998

Keywords

Alcoholic liver disease; IL-22 signaling pathway; intestinal barrier injury; LGG; liver function

Funding

  1. Basic Public Welfare Research Project in Zhejiang Province [LGF19H030010]
  2. Provincial Medical and Health Research Project [2018KY929]

Ask authors/readers for more resources

The study found that Lactobacillus rhamnosus Gorbach-Goldin (LGG) protects against chronic alcohol-induced intestinal and liver injury by regulating the intestinal IL-22 signaling pathway.
Alcoholic liver disease (ALD) is a common clinical liver injury disease. Lactobacillus rhamnosus Gorbach-Goldin (LGG) has been revealed to alleviate alcohol-induced intestinal barrier and liver injury. However, the underlying mechanism of LGG treatment for ALD remains unclear. To clarify this aspect, a chronic plus binge ALD model was constructed using C57BL/6 mice in line with a chronic alcohol binge feeding protocol. Interleukin 22 (IL-22) level was determined by quantitative real-time polymerase-chain reaction and enzyme-linked immunosorbent assays. Effects of LGG in model or IL-22 knockdown in LGG-treated model on the liver injury and steatosis status, as well as intestinal barrier function were assessed by hematoxylin eosin (HE) staining. Levels of alanine aminotransferase (ALT), triglyceride (TG), and aspartate aminotransferase (AST) in serum were measured by the corresponding kit. Western blot analysis was conducted to detect protein expressions of intestinal tight junction protein 1 (ZO-1) and Claudin-1. Concretely, LGG elevated IL-22 level in liver tissues and serum, while inhibiting ALT, TG, and AST levels in alcohol-exposed mice. Moreover, LGG alleviated liver injury, steatosis, and intestinal barrier injury caused by alcohol, and enhanced ZO-1 and Claudin-1 expressions. Furthermore, IL-22 knockdown increased ALT, TG, and AST levels in serum, and aggravated liver injury, steatosis, and intestinal barrier injury. ZO-1 and Claudin-1 levels were downregulated by IL-22 silencing. Importantly, downregulation of IL-22 reversed the effect of LGG on the liver and intestinal barrier injury. To conclude, LGG protects against chronic alcohol-induced intestinal and liver injury via regulating the intestinal IL-22 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available