4.6 Review

Nanotechnology Applications in Ground Heat Exchanger Pipes: A Review

Journal

APPLIED SCIENCES-BASEL
Volume 12, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/app12083794

Keywords

nanomaterials; nanofluids; Ground Heat Exchanger (GHE); Ground Source Heat Pump (GSHP); heat transfer; thermal conductivity

Funding

  1. Universidad Iberoamericana [DINVP-0051]

Ask authors/readers for more resources

The use of Ground Source Heat Pumps (GSHPs) has experienced rapid growth worldwide due to its advantages of low energy consumption and reduced emissions. However, the high cost of Ground Heat Exchanger (GHE) installation is a major obstacle to its widespread adoption. Previous studies have focused on improving heat transfer in GHEs using nanotechnology, including the development of nanofluids and new materials, as well as the design of new heat exchanger configurations.
The use of Ground Source Heat Pumps (GSHPs) has grown exponentially around the world over recent decades. The GSHP represents an alternative device to electric heating systems and oil boilers. Additionally, it requires a lower power consumption and less maintenance than combustion-based heating systems. Moreover, the CO2 emissions produced by a GSHP are lower than other systems based on burning oil, gas, or biomass. However, the main obstacle for the widespread use of GSHPs is the high cost of Ground Heat Exchanger (GHE) installation, a technology that exhibits low thermodynamic efficiencies. Over the past decade, some studies have been conducted to improve heat transfer in GHE pipes using traditional working fluids, creating new pipe materials or designing new heat exchanger configurations. The main contribution of this paper is a summarization of the outcomes of theoretical, numerical and experimental studies to improve heat transfer in GHEs using nanotechnology. Additionally, the development of new fluids (nanofluids) and new materials (nanoparticles and nanocomposites) applied to heat exchanger pipes and the designs and configurations of GHEs are highlighted. As a result, the present review provides a perspective for future research regarding the use of nanotechnology to reduce the costs involved in GHE for GSHP improvement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available