4.7 Article

Airflow-induced P(VDF-TrFE) fiber arrays for enhanced piezoelectric energy harvesting

Journal

APL MATERIALS
Volume 10, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0081257

Keywords

-

Funding

  1. Basic Science Research Program [NRF-2021R1A2C2095767]
  2. Nanomaterial Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2021M3A7C2089759]

Ask authors/readers for more resources

This study demonstrates a method to enhance the piezoelectric performance of P(VDF-TrFE) fiber mat by electrospinning with a rapidly rotating collector. The aligned fiber mat produced from the modified drum collector showed significantly increased crystalline electroactive beta-phase content, leading to improved piezoelectricity.
Piezoelectricity, flexibility, light weight, and biocompatibility of piezoelectric polymer fibers are the desired attributes for energy harvesting and sensing in wearable and biomedical applications. However, the relatively insufficient piezoelectric performance of piezoelectric polymers remains an issue. Here, we demonstrate a considerable increase in P(VDF-TrFE) fiber alignment via electrospinning with a rapidly rotating collector, which substantially enhanced the piezoelectric performance of the fiber mat over a large area. Considering the relationship between the airflow induced near the collector surface and the rotating speed, the collectors with different geometries were systematically compared in terms of the degree of alignment, fiber morphology, and the resulting crystalline electroactive phases of the fibers produced by each collector. We found that the strong airflow induced by the rapid rotation of the modified drum collector contributes to the preferential fiber orientation by pulling and stretching over a large area, which led to an increase in the crystalline electroactive beta-phase content responsible for piezoelectricity. As a result, a maximum voltage of 116.6 V and maximum output power of 13.6 mu Wwere achieved using a flexible piezoelectric device comprising a large-area, highly aligned P(VDF-TrFE) fiber mat produced from a modified drum collector at a significantly high speed. This work provides a facile but powerful solution for the wide use of piezoelectric polymer fibers. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available