4.7 Article

Tunable spin-charge conversion in class-I topological Dirac semimetals

Journal

APL MATERIALS
Volume 10, Issue 4, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0077431

Keywords

-

Funding

  1. College of Arts and Sciences, Case Western Reserve University

Ask authors/readers for more resources

We theoretically demonstrate that class-I topological Dirac semimetals can provide a platform for electrically and magnetically tunable spin-charge conversion, with significant tunability and high efficiency.
We theoretically demonstrate that class-I topological Dirac semimetals (TDSMs) can provide a platform for realizing both electrically and magnetically tunable spin-charge conversion. With time-reversal symmetry, the spin component along the uniaxial rotation axis (z axis) is approximately conserved, which leads to an anisotropic spin Hall effect; the resulting spin Hall current relies on the relative orientation between the external electric field and the z axis. The application of a magnetic field, on the other hand, breaks time-reversal symmetry, driving the TDSM into a Weyl semimetal phase and, consequently, partially converting the spin current to a charge Hall current. Using the Kubo formulas, we numerically evaluate the spin and charge Hall conductivities based on a low-energy TDSM Hamiltonian together with the Zeeman coupling. Besides the conventional tensor element of the spin Hall conductivity sigma(z)(xy), we find that unconventional components, such as sigma(x)(xy) and sigma(y)(xy), also exist and vary as the magnetic field is rotated. Likewise, the charge Hall conductivity also exhibits appreciable tunability upon variation of the magnetic field. We show that such tunability-as well as large spin-charge conversion efficiency-arises from the interplay of symmetry and band topology of the TDSMs. (C) 2022 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available