4.7 Article

Rheological and Thermal Conductivity Study of Two-Dimensional Molybdenum Disulfide-Based Ethylene Glycol Nanofluids for Heat Transfer Applications

Journal

NANOMATERIALS
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/nano12061021

Keywords

nanofluids; molybdenum disulfide; rheology; thermal conductivity; heat transfer

Funding

  1. Universiti Malaya [IIRG006A-19IISS]

Ask authors/readers for more resources

The rheological behavior of two-dimensional MoS2-based ethylene glycol nanofluids at low volume concentrations was investigated. The results showed that the viscosity reduction in nanofluids was due to the change in activation energy of ethylene glycol with the addition of MoS2. The nanofluids exhibited Newtonian behavior at concentrations below 0.01% and the yield strength varied with concentration and temperature.
The rheological behavior of two-dimensional (2D) MoS2-based ethylene glycol (EG) nanofluids (NFs) was investigated at low volume concentrations (0.005%, 0.0075%, and 0.01%) in a wide temperature range of 0-70 degrees C and at atmospheric pressure. A conventional two-step method was followed to prepare NFs at desired volume concentrations. Based on the control rotational (0.1-1000 s(-1) shear rate) and oscillation (0.01-1000% strain) methods, the viscoelastic flow curves and thixotropic (3ITT (three interval thixotropic) and hysteresis loop) characteristics of NFs were examined. Shear flow behavior revealed a remarkable reduction (1.3 similar to 14.7%) in apparent dynamic viscosity, which showed concentration and temperature dependency. Such remarkable viscosity results were assigned to the change in activation energy of the ethylene glycol with the addition of MoS2. However, the nanofluids exhibited Newtonian behavior at all temperatures for concentrations below 0.01% between 10 and 1000 s(-1). On the other hand, strain sweep (@1Hz) indicated the viscoelastic nature of NFs with yielding, which varied with concentration and temperature. Besides, 3ITT and hysteresis loop analysis was evident of non-thixotropic behavior of NFs. Among all tested concentrations, 0.005% outperformed at almost all targeted temperatures. At the same time, similar to 11% improvement in thermal conductivity can be considered advantageous on top of the improved rheological properties. In addition, viscosity enhancement and reduction mechanisms were also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available