4.7 Article

The Impact of Thermal Radiation on Maxwell Hybrid Nanofluids in the Stagnation Region

Journal

NANOMATERIALS
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/nano12071109

Keywords

stagnation point; Maxwell fluids; hybrid nanofluids; thermal radiation; stability analysis

Funding

  1. Universiti Kebangsaan Malaysia [GUP-2019-034]

Ask authors/readers for more resources

Building upon previous research, this study formulates a new mathematical model to investigate the stagnation point flow in Maxwell fluid, taking into account the effects of thermal radiation and heat transfer. Using similarity variables and numerical methods, approximate solutions are obtained, revealing the enhancement of heat transfer rate in Maxwell hybrid nanofluids.
Previous research has recognised the study of stagnation point flow by focusing Maxwell nanofluid on a stretching sheet surface. Motivated by this research idea, our main objective is to formulate and analyse a new mathematical model of stagnation point flow in Maxwell fluid that highlights the dual types of fluid known as hybrid nanofluids. The effects of thermal radiation and heat transfer are also considered. The partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) via similarity variables that generate similarity solutions. Following that, the bvp4c approach is employed to discover the approximate solutions of the reduced ODEs. The significance of various parameters is graphically presented and considers the physical quantities of interest. A remarkable observation found in this study is the enhancement of the heat transfer rate in Maxwell hybrid nanofluids, which is steadily amplified in contrast to traditional fluids. Indeed, the Maxwell parameter in hybrid nanofluids embarks on a substantial increment of the heat transfer rate. The current study succeeds in establishing more than one solution along the stretching/shrinking sheet. Thus, the stability analysis is conducted to confirm the sustainability of the solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available