4.5 Article

Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 104, Issue 10, Pages 2537-2543

Publisher

WILEY
DOI: 10.1002/jbm.a.35797

Keywords

electric charges balance; hyaluronic acid; alginate; chitosan; sponge

Funding

  1. INNOVA Chile [07CN13 IBM-252]
  2. FONDECYT [11150919]

Ask authors/readers for more resources

The study of biomaterials by electrical charge scaling to explore the role of net charge on biocompatibility and suitability for tissue regeneration has been limited as has the search for products that could improve this first-rate variable. In the present study, we prepared sponges composed of chitosan/alginate (CS/ALG) with or without hyaluronic acid (HA) by mixing polymer stock solutions of different net electric charge ratios (n(+/)n(-)), and then lyophilizing them to obtain porous materials. The electric charge ratios n(+/)n(-) studied were 0.3, 0.8, 1.0, and 2.5 for CS/ALG and 0.3, 1.0, 1.9, and 3.7 for CS/ALG/HA sponges. Under these conditions a role for net electric charge balance over sponge microstructure rearrangement, protection to dissolution, cellular proliferation, and cell-cell interactions was apparent, effects that were enhanced by copolymer modification with HA. Mass balance, electric charge, and specific products that influence both such as HA, have a potential in biomaterials for wound healing. (c) 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2537-2543, 2016.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available