4.5 Article

The complexity of daily life walking in older adult community-dwelling fallers and non-fallers

Journal

JOURNAL OF BIOMECHANICS
Volume 49, Issue 9, Pages 1420-1428

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2016.02.055

Keywords

Gait; Complexity; Multiscale entropy; Variability; Falls; Aging; Older adults; Accelerometer

Funding

  1. National Institutes of Health
  2. Norwegian Research Council (FRIMEDBIO) [230435]
  3. European Commission [288878]

Ask authors/readers for more resources

Complexity of human physiology and physical behavior has been suggested to decrease with aging and disease and make older adults more susceptible to falls. The present study investigates complexity in daily life walking in community-dwelling older adult fallers and non-fallers measured by a 3D inertial accelerometer sensor fixed to the lower back. Complexity was expressed using new metrics of entropy: refined composite multiscale entropy (RCME) and refined multiscale permutation entropy (RMPE). The study re-analyses data of 3 days daily-life activity originally described by Weiss et al. (2013). The data set contains inertial sensor data from 39 older persons reporting less than 2 falls and 32 older persons reporting two or more falls during the previous year. The RCME and the RMPE were derived for trunk acceleration and velocity signals from walking epochs of 50 s using mean and variance coarse graining of the signals. Discriminant abilities of the entropy metrics were assessed using a partial least square discriminant analysis. Both RCME and RMPE successfully distinguished between the daily-life walking of the fallers and non-fallers (AUC>0.8) and performed better than the 35 conventional gait features investigated by Weiss et al. (2013). Higher complexity was found in the vertical and mediolateral directions in the non-fallers for both entropy metrics. These findings suggest that RCME and RMPE can be used to improve the assessment of fall risk in older people. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available