4.5 Article

Study Protocol of tDCS Based Pain Modulation in Head and Neck Cancer Patients Under Chemoradiation Therapy Condition: An fNIRS-EEG Study

Journal

FRONTIERS IN MOLECULAR NEUROSCIENCE
Volume 15, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2022.859988

Keywords

head and neck cancer; chemoradiotherapy; transcranial direct current stimulation; functional near-infrared spectroscopy; electroencephalograph

Categories

Funding

  1. MCubed Award-University of Michigan
  2. Brazilian Government Agency: CNPQ (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)
  3. Brazilian Government Agency: Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

Ask authors/readers for more resources

This study aimed to investigate the analgesic effects of tDCS in head and neck cancer patients undergoing chemoradiation therapy and explore the underlying brain mechanisms. The study protocol included remote and in-clinic tDCS sessions, and brain imaging was performed using fNIRS and EEG. Preliminary results suggest that tDCS may reduce pain by modulating the connections between S1 and PFC.
Background: Multiple therapeutic strategies have been adopted to reduce pain, odynophagia, and oral mucositis in head and neck cancer patients. Among them, transcranial direct current stimulation (tDCS) represents a unique analgesic modality. However, the details of tDCS mechanisms in pain treatment are still unclear. ims: (1) to study the analgesic effects of a protocol that encompassed supervised-remote and in-clinic tDCS sessions applied in head and neck patients undergoing chemoradiation therapy; (2) to explore the underlining brain mechanisms of such modulation process, using a novel protocol that combined functional near-infrared spectroscopy (fNIRS), and electroencephalograph (EEG), two distinct neuroimaging methods that bring information regarding changes in the hemodynamic as well as in the electrical activity of the brain, respectively. Methods: This proof-of-concept study was performed on two subjects. The study protocol included a 7-week-long tDCS stimulation procedure, a pre-tDCS baseline session, and two post-tDCS follow-up sessions. Two types of tDCS devices were used. One was used in the clinical setting and the other remotely. Brain imaging was obtained in weeks 1, 2, 5, 7, 8, and after 1 month. Results: The protocol implemented was safe and reliable. Preliminary results of the fNIRS analysis in weeks 2 and 7 showed a decrease in functional connections between the bilateral prefrontal cortex (PFC) and the primary sensory cortex (S1) (p < 0.05, FDR corrected). Changes in EEG power spectra were found in the PFC when comparing the seventh with the first week of tDCS. Conclusion: The protocol combining remote and in-clinic administered tDCS and integrated fNIRS and EEG to evaluate the brain activity is feasible. The preliminary results suggest that the mechanisms of tDCS in reducing the pain of head and neck cancer patients may be related to its effects on the connections between the S1 and the PFC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available