4.6 Article

Identification and validation of a ferroptosis-related gene signature for predicting survival in skin cutaneous melanoma

Journal

CANCER MEDICINE
Volume 11, Issue 18, Pages 3529-3541

Publisher

WILEY
DOI: 10.1002/cam4.4706

Keywords

ferroptosis; gene signature; melanoma; overall survival; tumor immunity

Categories

Ask authors/readers for more resources

This study developed a robust signature with ferroptosis-related genes and assessed its ability to predict overall survival in patients with skin cutaneous melanoma. The signature showed higher prediction efficiency than clinicopathological features and was associated with immune pathways and immunosuppression in melanoma.
Purpose Ferroptosis plays a crucial role in the initiation and progression of melanoma. This study developed a robust signature with ferroptosis-related genes (FRGs) and assessed the ability of this signature to predict OS in patients with skin cutaneous melanoma (SKCM). Methods RNA-sequencing data and clinical information of melanoma patients were extracted from TCGA, GEO, and GTEx. Univariate, multivariate, and LASSO regression analyses were conducted to identify the gene signature. A 10 FRG signature was an independent and strong predictor of survival. The predictive performance was assessed using ROC curve. The functions of this gene signature were assessed by GO and KEGG analysis. The statuses of low-risk and high-risk groups according to the gene signature were compared by GSEA. In addition, we investigated the possible relationship of FRGs with immunotherapy efficacy. Results A prognostic signature with 10 FRGs (CYBB, IFNG, FBXW7, ARNTL, PROM2, GPX2, JDP2, SLC7A5, TUBE1, and HAMP) was identified by Cox regression analysis. This signature had a higher prediction efficiency than clinicopathological features (AUC = 0.70). The enrichment analyses of DEGs indicated that ferroptosis-related immune pathways were largely enriched. Furthermore, GSEA showed that ferroptosis was associated with immunosuppression in the high-risk group. Finally, immune checkpoints such as PDCD-1 (PD-1), CTLA4, CD274 (PD-L1), and LAG3 were also differential expression in two risk groups. Conclusions The 10 FRGs signature were a strong predictor of OS in SKCM and could be used to predict therapeutic targets for melanoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available