4.5 Article

Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers

Journal

SYMMETRY-BASEL
Volume 14, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/sym14030624

Keywords

quantum computing; spin liquids; eigenstates; quantum error mitigation

Funding

  1. US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center

Ask authors/readers for more resources

This paper presents two strategies for the preparation of total spin eigenfunctions on quantum computers, and demonstrates the construction and implementation of these quantum circuits.
The application of quantum algorithms to the study of many-particle quantum systems requires the ability to prepare wave functions that are relevant in the behavior of the system under study. Hamiltonian symmetries are important instruments used to classify relevant many-particle wave functions and to improve the efficiency of numerical simulations. In this work, quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers are presented. Two different strategies are discussed and compared: exact recursive construction of total spin eigenfunctions based on the addition theorem of angular momentum, and heuristic approximation of total spin eigenfunctions based on the variational optimization of a suitable cost function. The construction of these quantum circuits is illustrated in detail, and the preparation of total spin eigenfunctions is demonstrated on IBM quantum devices, focusing on three- and five-spin systems on graphs with triangle connectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available