4.7 Article

Identification of Quantitative Trait Loci Associated With Iron Deficiency Tolerance in Maize

Journal

FRONTIERS IN PLANT SCIENCE
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.805247

Keywords

maize (Zea mays L; ); iron (Fe) deficiency tolerance; iron efficiency; nitrogen form; quantitative trait locus (QTL)

Categories

Ask authors/readers for more resources

This study compared Fe-efficient and Fe-inefficient maize inbred lines to reveal physiological and genetic responses to low Fe stress, finding that supplying ammonium nitrate and nitrate nitrogen can promote maize growth and lower root Fe concentration.
Iron (Fe) is a limiting factor in crop growth and nutritional quality because of its low solubility. However, the current understanding of how major crops respond to Fe deficiency and the genetic basis remains limited. In the present study, Fe-efficient inbred line Ye478 and Fe-inefficient inbred line Wu312 and their recombinant inbred line (RIL) population were utilized to reveal the physiological and genetic responses of maize to low Fe stress. Compared with the Fe-sufficient conditions (+Fe: 200 mu M), Fe-deficient supply (-Fe: 30 mu M) significantly reduced shoot and root dry weights, leaf SPAD of Fe-efficient inbred line Ye478 by 31.4, 31.8, and 46.0%, respectively; decreased Fe-inefficient inbred line Wu312 by 72.0, 45.1, and 84.1%, respectively. Under Fe deficiency, compared with the supply of calcium nitrate (N1), supplying ammonium nitrate (N2) significantly increased the shoot and root dry weights of Wu312 by 37.5 and 51.6%, respectively; and enhanced Ye478 by 23.9 and 45.1%, respectively. Compared with N1, N2 resulted in a 70.0% decrease of the root Fe concentration for Wu312 in the -Fe treatment, N2 treatment reduced the root Fe concentration of Ye478 by 55.8% in the -Fe treatment. These findings indicated that, compared with only supplying nitrate nitrogen, combined supply of ammonium nitrogen and nitrate nitrogen not only contributed to better growth in maize but also significantly reduced Fe concentration in roots. In linkage analysis, ten quantitative trait loci (QTLs) associated with Fe deficiency tolerance were detected, explaining 6.2-12.0% of phenotypic variation. Candidate genes considered to be associated with the mechanisms underlying Fe deficiency tolerance were identified within a single locus or QTL co-localization, including ZmYS3, ZmPYE, ZmEIL3, ZmMYB153, ZmILR3 and ZmNAS4, which may form a sophisticated network to regulate the uptake, transport and redistribution of Fe. Furthermore, ZmYS3 was highly induced by Fe deficiency in the roots; ZmPYE and ZmEIL3, which may be involved in Fe homeostasis in strategy I plants, were significantly upregulated in the shoots and roots under low Fe stress; ZmMYB153 was Fe-deficiency inducible in the shoots. Our findings will provide a comprehensive insight into the physiological and genetic basis of Fe deficiency tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available