4.6 Article

Genetic Diversity and Population Structure Reveal Cryptic Genetic Variation and Long Distance Migration of Puccinia graminis f. sp. tritici in the Indian Subcontinent

Journal

FRONTIERS IN MICROBIOLOGY
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2022.842106

Keywords

wheat; stem rust; virulence phenotype; SSR genotype; genetic diversity; evolution

Categories

Ask authors/readers for more resources

This study investigated the genetic diversity and evolutionary patterns of Puccinia graminis f. sp. tritici (Pgt) pathotypes causing stem rust in wheat. Results showed significant genetic diversity among the pathotypes, which may be attributed to their long-distance dispersal ability and gene flow. These findings are important for the development of strategies for stem rust resistance breeding.
Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of wheat worldwide since time immemorial. Several wheat stem rust outbreaks have been reported worldwide including India. Approximately 7 mha wheat area in central and peninsular India is highly vulnerable to stem rust epidemics. In this study, a repository of 29 single genotype uredospore pathotypes, representing five geographical regions, was characterized by investigating their virulence phenotype and simple sequence repeat (SSR) genotypes using 37 reproducible polymorphic SSR markers, 32 of which had >= 0.50 polymorphic information content (PIC) value. Virulence phenotypes were used to evaluate the virulence frequency (VF) and construct a hypothetical evolutionary hierarchy of these pathotypes. We projected seven lineages to explain the evolutionary pattern of the Pgt population. The VF of these pathotypes ranged between 0% and 100%. The virulence-based neighbor-joining (NJ) cluster analysis grouped Pgt pathotypes into five virulence groups. Likewise, five molecular groups were categorized using molecular genotypes. The molecular grouping was supported by principal coordinate analysis (PCoA), which revealed 25% of the cumulative variance contributed by the first two axes. Analysis of molecular variance (AMOVA) revealed 8 and 92% of the variation among and within the populations, respectively. The Mantel test confirmed a positive but weak correlation (R-2 = 0.15) between virulence phenotypes and SSR genotypes. The highest and lowest values of different genetic diversity parameters (Na, Ne, I, He, uHe, and %P) revealed maximum and minimum variability in the Pgt population from Maharashtra and Uttar Pradesh, respectively. The population structure analysis clustered 29 Pgt pathotypes into two subpopulations and an admixture. Our results demonstrated that there was significant genetic diversity among Pgt pathotypes resulting from their long-distance dispersal ability complemented by gene flow. These findings provide insights into the virulence patterns, genetic variations, and possible evolution of Pgt pathotypes, which would support strategic stem rust resistance breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available