4.7 Article

Response of Ecohydrological Variables to Meteorological Drought under Climate Change

Journal

REMOTE SENSING
Volume 14, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/rs14081920

Keywords

drought; ecohydrological variables; return period; climate change

Funding

  1. National Natural Science Foundation of China [41991233]

Ask authors/readers for more resources

Drought is a common climate extreme that negatively affects ecohydrology. The thresholds of drought severity and duration that cause changes in ecohydrological variables are largely unknown. Furthermore, the effects of drought on ecohydrological variables vary under climate change conditions.
Drought is the most widespread climatic extreme that has negative impacts on ecohydrology. Studies have shown that drought can cause certain degrees of disturbances to different ecohydrological variables, but the duration and severity thresholds of drought that are sufficient to cause changes in ecohydrological variables remain largely unknown. At the same time, we should not ignore the dynamic variation of drought's effect on ecohydrological variables under the condition of climate change. Here, we derived the thresholds of several ecohydrological variables in response to drought in a historical period (1982-2015), including evapotranspiration (ET), soil moisture (SM), the vapor pressure deficit (VPD) and the normalized difference vegetation index (NDVI), and we projected the occurrence probability's change trend of drought events that cause changes in ecohydrological variables under future climate change. The results show that the impact of drought on ecohydrological variables is not dependent on drought indicators. ET and NDVI were expected to decrease in most parts of the world due to increases in radiation (RAD) and temperature (TEMP) and decreases in precipitation (PRE) during drought periods. SM decreased in most regions of the world (93.47%) during the drought period, while VPD increased in 85.41% of the globe. The response thresholds for different ecohydrological variables to drought in the same area did not differ significantly (especially for ET, SM and VPD). When a drought lasted for 8 to 15 months and the corresponding drought severity reached 10 to 15 (the inverse of the cumulative values of the drought index when the drought occurs), the drought caused changes in the ecohydrological variables in most regions of the world. Compared with arid and semiarid regions, ecohydrological variables are more sensitive to drought in humid and semihumid regions (p < 0.05), and high-intensity human activities in different climatic conditions increased significantly the severity of drought processes. Between 2071 and 2100, more than half of the world's ecohydrological variables are expected to be more susceptible to drought disturbances (regions with shorter return periods of drought events that cause significant changes in ET, SM, VPD and NDVI account for 60.1%, 64.4%, 59.6% and 54.5% of the global land area, respectively).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available