4.7 Article

Analysis of the Warpage Phenomenon of Micro-Sized Parts with Precision Injection Molding by Experiment, Numerical Simulation, and Grey Theory

Journal

POLYMERS
Volume 14, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/polym14091845

Keywords

warpage; precision injection molding; optimal design and processing; experiment; numerical simulation; grey theory

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 97-2221-E-038-004]

Ask authors/readers for more resources

In this study, the effects of design and processing parameters of precision injection molding (PIM) on minimizing warpage of micro-sized parts were determined. The mold temperature was found to be the most significant process parameter, and PA material was identified as the most suitable for micro-sized parts.
In this study, we determined the effects of design and processing parameters of precision injection molding (PIM) to minimize warpage phenomena of micro-sized parts using various plastics (polyoxymethylene (POM), acrylonitrile-butadiene-styrene (ABS), polypropylene (PP), polyamide (PA), and ABS+ polycarbonate (PC)). We applied a numerical simulation (Moldflow) to determine the runner's balance in multi-cavities of the micro-sized part and simulate the warpage phenomenon of micro-parts with PIM. We used simulation data to fabricate a steel mold by computer numerical control (CNC) machining. In this, we study manufactured a micro-sized part and measured its warpage value using various PIM process parameters (melt temperature, mold temperature, injection pressure, and filling time). In order to obtain optimal results (i.e., minimum warpage), we employed the Taguchi method and grey theory to discern the influence of each process parameter on PIM. Finally, we determined that the most significant PIM process parameter influencing the warpage phenomenon of micro-sized parts was the mold temperature, regardless of whether in terms of the experimental results, numerical simulations, or grey theory. The PA material had the most suitable properties for application for micro-sized parts, regardless of whether in terms of experimental results, numerical simulations, or grey theory for PIM. This study also illustrates that micro-sized parts can be fabricated by PIM without the use of micro-injection molding, and we determined that the mold temperature required for molding does not need to be higher than the glass-transition temperature of the material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available