4.7 Article

Influence of Fluorinated Polyurethane Binder on the Agglomeration Behaviors of Aluminized Propellants

Journal

POLYMERS
Volume 14, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/polym14061124

Keywords

fluorinated polyurethane; thermal decomposition; agglomeration; aluminized propellants; combustion performance

Funding

  1. National Natural Science Foundation of China [21905024, 22005031]

Ask authors/readers for more resources

In this study, fluorinated polyurethane (FPU) was prepared and its structure and mechanical properties were characterized. It was found that FPU can enhance the oxidation of Al and produce smaller agglomerates in the combustion process.
In this study, fluorinated polyurethane (FPU) was prepared from dialcohol-terminated perfluoropolyether as a soft segment; isophorone diisocyanate (IPDI) as a curing agent; 1,2,4-butanetriol (BT) as a crosslinker; and 1,4-butanediol (BDO) as a chain extender. Fourier transform infrared spectroscopy (FTIR) and H-1 NMR were used to characterize the structure of the FPU. The mechanical properties of the FPUs with different BDO and BT contents were also measured. The tensile strength and breaking elongation of the optimized FPU formula were 3.7 MPa and 412%, respectively. To find out the action mechanism of FPU on Al, FPU/Al was prepared by adding Al directly to FPU. The thermal decomposition of the FPU and FPU/Al was studied and compared by simultaneous differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). It was found that FPU can enhance the oxidation of Al by altering the oxide-shell properties. The combustion performance of the FPU propellant, compared with the corresponding hydroxyl-terminated polyether (HTPE)-based polyurethane (HPU) propellant, was recorded by a high-speed video camera. The FPU propellants were found to produce smaller agglomerates due to the generation of AlF3 in the combustion process. These findings show that FPU may be a useful binder for tuning the agglomeration and reducing two-phase flow losses of aluminized propellants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available