4.7 Article

Tuning Polymer/TiO2 Nanocomposites Morphology by In Situ Non-Hydrolytic Sol-Gel Syntheses in Viscous Polymer Medium: Influence of the Polymer Nature and Oxygen Donor

Journal

POLYMERS
Volume 14, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/polym14112273

Keywords

non hydrolytic sol-gel; nanocomposites; polymer processing; PP; PS

Funding

  1. Agence Nationale pour la Recherche [ANR-16-CE08-0015 SYNCOPE]

Ask authors/readers for more resources

This study investigated the influence of polymer nature on the morphology of synthesized TiO2 through NHSG routes, demonstrating the possibility to control the morphology of inorganic objects by the appropriate choice of solvent and reactants.
Herein, we reported the synthesis of TiO2 through different non-hydrolytic sol-gel (NHSG) routes in viscous polymer media. For the first time, the influence of the polymer nature (Polystyrene (PS) or Polypropylene (PP)) on the morphology of synthesized inorganic domains was investigated. The non-hydrolytic sol-gel reactions between titanium isopropoxide Ti((OPr)-Pr-i)(4) and acetic anhydride in molten polypropylene lead to the formation of microfillers with a mean diameter of about 1 mu m, while the same synthesis carried out in viscous polystyrene lead to the formation of nanofillers with diameter lower than 10 nm forming aggregates of approximately 200 nm. We have also investigated the influence of the oxygen donor nature on the morphology of synthesized fillers using aromatic oxygen donors in a polystyrene matrix. The use of benzoic anhydride or acetophenone as oxygen donors with Ti((OPr)-Pr-i)(4) in viscous polystyrene lead to respectively platelet-like morphology or aggregated nanofillers. We demonstrated that the affinity between polymer, reactants, and/or by-products had an influence on the morphology and the size of in situ synthesized TiO2 fillers. These results evidenced for the first time the possibility to control and to tune the morphology of in situ grown inorganic objects through the NHSG process by the appropriate choice of solvent, here a viscous polymer medium, and reactants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available