4.5 Article

High DDT resistance without apparent association to kdr and Glutathione-S-transferase (GST) gene mutations in Aedes aegypti population at hotel compounds in Zanzibar

Journal

PLOS NEGLECTED TROPICAL DISEASES
Volume 16, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0010355

Keywords

-

Funding

  1. Ministry of Foreign Affairs of Denmark (MFA) [17-04-KU]
  2. MFA [Phase III: 2016 -45640]

Ask authors/readers for more resources

The study found that Aedes aegypti mosquitoes in hotel compounds on Zanzibar Island were highly resistant to DDT, and possibly resistant to deltamethrin and propoxur, but this resistance was not linked to mutations in the studied genes. The presence of insecticide resistance in Ae. aegypti in hotel compounds could act as sources of resistant mosquitoes. Further research is needed to determine the causes and prevent resistance from spreading.
Global efforts to control Aedes mosquito-transmitted pathogens still rely heavily on insecticides. However, available information on vector resistance is mainly restricted to mosquito populations located in residential and public areas, whereas commercial settings, such as hotels are overlooked. This may obscure the real magnitude of the insecticide resistance problem and lead to ineffective vector control and resistance management. We investigated the profile of insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. At least 100 adults Ae. aegypti females from larvae collected at four hotel compounds were exposed to papers impregnated with discriminant concentrations of DDT (4%), permethrin (0.75%), 0.05 deltamethrin (0.05%), propoxur (0.1%) and bendiocarb (0.1%) to determine their susceptibility profile. Allele-specific qPCR and sequencing analysis were applied to determine the possible association between observed resistance and presence of single nucleotide polymorphisms (SNPs) in the voltage-gated sodium channel gene (VGSC) linked to DDT/pyrethroid cross-resistance. Additionally, we explored the possible involvement of Glutathione-S-Transferase gene (GSTe2) mutations for the observed resistance profile. In vivo resistance bioassay indicated that Ae. aegypti at studied sites were highly resistant to DDT, mortality rate ranged from 26.3% to 55.3% and, moderately resistant to deltamethrin with a mortality rate between 79% to and 100%. However, genotyping of kdr mutations affecting the voltage-gated sodium channel only showed a low frequency of the V1016G mutation (n = 5; 0.97%). Moreover, for GSTe2, seven non-synonymous SNPs were detected (L111S, C115F, P117S, E132A, I150V, E178A and A198E) across two distinct haplotypes, but none of these were significantly associated with the observed resistance to DDT. Our findings suggest that cross-resistance to DDT/deltamethrin at hotel compounds in Zanzibar is not primarily mediated by mutations in VGSC. Moreover, the role of identified GSTe2 mutations in the resistance against DDT remains inconclusive. We encourage further studies to investigate the role of other potential insecticide resistance markers. Author summary Available information on mosquito resistance to insecticides is mainly restricted to residential and public areas, whereas commercial settings, such as hotels are overlooked. This may hide the real size of an insecticide resistance problem and lead to ineffective mosquito control. We investigated insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. We also looked at whether resistance occurred in mosquitoes with gene mutations for two proteins (voltage-gated sodium channels and glutathione-S-transferase) that are known to cause resistance to insecticides in other parts of the world. The Ae. aegypti mosquitoes collected from hotels were highly resistant to DDT, and moderately and possibly resistant to deltamethrin and propoxur, respectively. However, resistance to these insecticides was not linked to mutations in either of the studied genes. The presence of insecticide resistance in Ae. aegypti in hotel compounds on Zanzibar is concerning and shows that these areas can act as sources of resistant mosquitoes. More needs to be done to establish the underlying causes for insecticide resistance in hotel Ae. aegypti populations, and this information can then be used to design measures that prevent resistance from becoming more widespread on Zanzibar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available