4.6 Article

Transcription Factors and DNA Repair Enzymes Compete for Damaged Promoter Sites

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 291, Issue 11, Pages 5452-5460

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.672733

Keywords

8-Oxoguanine (8-oxoG); 8-Oxoguanine glycosylase (OGG1); cAMP-response element-binding protein (CREB); development; DNA repair; embryo; transcription; zebrafish; G; U mispair; uracil DNA glycosylase; DNA base excision repair; CREB1 transcription factor; glycosylase; transcription factor competition; DNA damage repair

Funding

  1. G. Harold and Leila Y. Mathers Foundation, Aid for Cancer Research
  2. Northeastern University

Ask authors/readers for more resources

Transcriptional regulation is a tightly regulated, vital process. The transcription factor cyclic AMP-response element-binding protein 1 (CREB1) controls approximate to 25% of the mammalian transcriptome by binding the CREB1 binding site consensus sequence (CRE) sequence (TGACGTCA). DNA lesions within CRE modulate CREB1 binding negatively and positively. Because appropriate DNA lesions also interact with base excision repair proteins, we investigated whether CREB1 and repair glycosylases compete with each other. We incubated 39-mer CRE-containing double-stranded oligonucleotides with recombinant CREB1 alone or with UNG2 or OGG1, followed by EMSA. The CpG islet within CRE was modified to contain a G/U or 8-oxoG (degrees G)/C mispair. OGG1 and CREB1 reversibly competed for CRE containing an degrees G/C pair. Also, OGG1 blocked CREB1 from dimerizing by 69%, even when total CREB1 binding was reduced only by 20-30%. In contrast, bound CREB1 completely prevented access to G/U-containing CRE by UNG2 and, therefore, to base excision repair, whereas UNG2 exposure prevented CREB1 binding. CREB1 dimerization was unaffected by UNG2 when CREB1 bound to CRE, but was greatly reduced by prior UNG2 exposure. To explore physiological relevance, we microinjected zebrafish embryos with the same oligonucleotides, as a sink for endogenous CREB1. As predicted, microinjection with unmodified or lesion-containing CRE, but not scrambled CRE or scrambled CRE with a G/U mispair, resulted in increased embryo death. However, only the G/U mispair in native CRE resulted in substantial developmental abnormalities, thus confirming the danger of unrepaired G/U mispairs in promoters. In summary, CREB1 and DNA glycosylases compete for damaged CRE in vitro and in vivo, thus blocking DNA repair and resulting in transcriptional misregulation leading to abnormal development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available