4.7 Article

Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption

Journal

NANO-MICRO LETTERS
Volume 14, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-022-00851-3

Keywords

Magnetic and dielectric aerogels; Metal-organic frameworks; Gelation mechanism; Microwave absorption; Radar cross-sectional simulation

Funding

  1. Shanghai Jiao Tong University

Ask authors/readers for more resources

This study presents a facile method for synthesizing metal-organic framework/graphene oxide aerogels and demonstrates their remarkable microwave absorption performance. The synergistic effects of hierarchically porous structures and heterointerface engineering contribute to the excellent microwave attenuation ability of these aerogels.
The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal-organic frameworks (MOFs) and graphene oxide (GO) building blocks that exhibit an ultralow density and uniformly distributed MOFs on GO sheets is important for various applications. Herein, we report a facile route for synthesizing MOF/reduced GO (rGO) aerogels based on the gelation of GO, which is directly initiated using MOF crystals. Free metal ions exposed on the surface of MIL-88A nanorods act as linkers that bind GO nanosheets to a three-dimensional porous network via metal-oxygen covalent or electrostatic interactions. The MOF/rGO-derived magnetic and dielectric aerogels Fe3O4@C/rGO and Ni-doped Fe3O4@C/rGO show notable microwave absorption (MA) performance, simultaneously achieving strong absorption and broad bandwidth at low thickness of 2.5 (-58.1 dB and 6.48 GHz) and 2.8 mm (-46.2 dB and 7.92 GHz) with ultralow filling contents of 0.7 and 0.6 wt%, respectively. The microwave attenuation ability of the prepared aerogels is further confirmed via a radar cross-sectional simulation, which is attributed to the synergistic effects of their hierarchically porous structures and heterointerface engineering. This work provides an effective pathway for fabricating hierarchically porous MOF/rGO hybrid aerogels and offers magnetic and dielectric aerogels for ultralight MA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available