4.4 Article

Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF

Journal

JOURNAL OF BACTERIOLOGY
Volume 198, Issue 18, Pages 2458-2469

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00343-16

Keywords

-

Categories

Funding

  1. HHS \ National Institutes of Health (NIH) [AI097264]

Ask authors/readers for more resources

CsrA family RNA-binding proteins are widely distributed in bacteria and regulate gene expression at the posttranscriptional level. Pseudomonas aeruginosa has a canonical member of the CsrA family (RsmA) and a novel, structurally distinct variant (RsmF). To better understand RsmF binding properties, we performed parallel systematic evolution of ligands by exponential enrichment (SELEX) experiments for RsmA and RsmF. The initial target library consisted of 62-nucleotide (nt) RNA transcripts with central cores randomized at 15 sequential positions. Most targets selected by RsmA and RsmF were the expected size and shared a common consensus sequence (CANGGAYG) that was positioned in a hexaloop region of the stem-loop structure. RsmA and RsmF also selected for longer targets (>= 96 nt) that were likely generated by rare PCR errors. Most of the long targets contained two consensus-binding sites. Representative short (single consensus site) and long (two consensus sites) targets were tested for RsmA and RsmF binding. Whereas RsmA bound the short targets with high affinity, RsmF was unable to bind the same targets. RsmA and RsmF both bound the long targets. Mutation of either consensus GGA site in the long targets reduced or eliminated RsmF binding, suggesting a requirement for two tandem binding sites. Conversely, RsmA bound long targets containing only a single GGA site with unaltered affinity. The RsmF requirement for two binding sites was confirmed with tssA1, an in vivo regulatory target of RsmA and RsmF. Our findings suggest that RsmF binding requires two GGA-containing sites, while RsmA binding requirements are less stringent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available