4.4 Article

Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA

Journal

JOURNAL OF BACTERIOLOGY
Volume 198, Issue 7, Pages 1022-1034

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00831-15

Keywords

-

Categories

Funding

  1. University of Idaho Agricultural Experiment Station Hatch Project [IDA01406, IDA01467]
  2. HHS \ National Institutes of Health (NIH) [P20GM103408]

Ask authors/readers for more resources

The isolation of aerobic citrate-utilizing Escherichia coli (Cit(+)) in long-term evolution experiments (LTEE) has been termed a rare, innovative, presumptive speciation event. We hypothesized that direct selection would rapidly yield the same class of E. coli Cit(+) mutants and follow the same genetic trajectory: potentiation, actualization, and refinement. This hypothesis was tested with wild-type E. coli strain B and with K-12 and three K-12 derivatives: an E. coli Delta rpoS::kan mutant (impaired for stationary-phase survival), an E. coli Delta citT::kan mutant (deleted for the anaerobic citrate/succinate antiporter), and an E. coli Delta dctA::kan mutant (deleted for the aerobic succinate transporter). E. coli underwent adaptation to aerobic citrate metabolism that was readily and repeatedly achieved using minimal medium supplemented with citrate (M9C), M9C with 0.005% glycerol, or M9C with 0.0025% glucose. Forty-six independent E. coli Cit(+) mutants were isolated from all E. coli derivatives except the E. coli Delta citT:: kan mutant. Potentiation/actualization mutations occurred within as few as 12 generations, and refinement mutations occurred within 100 generations. Citrate utilization was confirmed using Simmons, Christensen, and LeMaster Richards citrate media and quantified by mass spectrometry. E. coli Cit(+) mutants grew in clumps and in long incompletely divided chains, a phenotype that was reversible in rich media. Genomic DNA sequencing of four E. coli Cit(+) mutants revealed the required sequence of mutational events leading to a refined Cit(+) mutant. These events showed amplified citT and dctA loci followed by DNA rearrangements consistent with promoter capture events for citT. These mutations were equivalent to the amplification and promoter capture CitT-activating mutations identified in the LTEE. IMPORTANCE E. coli cannot use citrate aerobically. Long-term evolution experiments (LTEE) performed by Blount et al. (Z. D. Blount, J. E. Barrick, C. J. Davidson, and R. E. Lenski, Nature 489:513-518, 2012, http://dx.doi.org/10.1038/nature11514) found a single aerobic, citrate-utilizing E. coli strain after 33,000 generations (15 years). This was interpreted as a speciation event. Here we show why it probably was not a speciation event. Using similar media, 46 independent citrate-utilizing mutants were isolated in as few as 12 to 100 generations. Genomic DNA sequencing revealed an amplification of the citT and dctA loci and DNA rearrangements to capture a promoter to express CitT, aerobically. These are members of the same class of mutations identified by the LTEE. We conclude that the rarity of the LTEE mutant was an artifact of the experimental conditions and not a unique evolutionary event. No new genetic information (novel gene function) evolved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available