4.5 Article

Genetics and Emerging Therapies for Brain Arteriovenous Malformations

Journal

WORLD NEUROSURGERY
Volume 159, Issue -, Pages 327-337

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.wneu.2021.10.127

Keywords

Hereditary hemorrhagic telangiectasia; KRAS; Molecular; Remodeling; Signaling; VEGF

Ask authors/readers for more resources

Brain arteriovenous malformations (AVMs) are high-pressure, low-resistance vascular structures with a risk of spontaneous rupture. Understanding the cellular and molecular pathways can help prevent their development and progression. Treatment options are diverse and often involve a multidisciplinary approach, with an increasing demand for pharmacologic interventions.
Brain arteriovenous malformations (AVMs) are characterized by a high-pressure, low-resistance vascular nidus created by direct shunting of blood from feeding arteries into arterialized veins, bypassing intervening capillaries. AVMs pose a risk of spontaneous rupture because the vessel walls are continuously exposed to increased shear stress and abnormal flow phenomena, which lead to vessel wall inflammation and distinct morphologic changes. The annual rupture rate is estimated at 2%, and once an AVM ruptures, the risk of rerupture increases 5-fold. The ability of AVMs to grow, regress, recur, and undergo remodeling shows their dynamic nature. Identifying the underlying cellular and molecular pathways of AVMs not only helps us understand their natural physiology but also allows us to directly block vital pathways, thus preventing AVM development and progression. Management of AVMs is challenging and often necessitates a multidisciplinary approach, including neurosurgical, endovascular, and radiosurgical expertise. Because many of these procedures are invasive, carry a risk of inciting hemorrhage, or are controversial, the demand for pharmacologic treatment options is increasing. In this review, we introduce novel findings of cellular and molecular AVM physiology and highlight key signaling mediators that are potential targets for AVM treatment. Furthermore, we give an overview of syndromes associated with hereditary and nonhereditary AVM formation and discuss causative genetic alterations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available