4.7 Article

CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: Significance for melanoma treatment

Journal

CANCER LETTERS
Volume 357, Issue 1, Pages 83-104

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2014.10.043

Keywords

Melanoma; CSC; CAPE; E2F1; CD133; MAP kinase

Categories

Funding

  1. German Research Foundation [HA 5081/3-1]
  2. German Cancer Foundation [10-2202-Ha1]
  3. L'Alsace contre le cancer, France [09-2012-Ha2]

Ask authors/readers for more resources

According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation. Published by Elsevier Ireland Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available