4.7 Article

A point-like thermal light source as a probe for sensing light-matter interaction

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-07668-5

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [182849149, SFB 953]

Ask authors/readers for more resources

Historically, thermal radiation was thought to be related to 3D cavities, but in practice, it is known that almost any hot surface radiates according to Planck's law. This universality is due to the smooth electromagnetic mode structure of free space. By studying a strongly patterned mode structure, researchers used quasi-transparent point-like thermal light emitters as probes to observe the effects on thermal radiation.
Historically, thermal radiation is related to 3D cavities. In practice, however, it is known that almost any hot surface radiates according to Planck's law. This approximate universality roots in the smooth electromagnetic mode structure of free space, into which the radiation is emitted. Here, we study the effect for a strongly patterned mode structure and use quasi-transparent point-like thermal light emitters as a probe. As such, we choose current-driven graphene nanojunctions for which the emission into free space obeys Planck's law. Placed in front of a mirror, however, this process is highly sensitive to a node/antinode pattern of light modes. By varying the distance, we can sample the latter with atomic precision, and observe a deep imprint on the observed spectrum. The experiment allows an unprecedented view on thermal radiation in a spatially/spectrally patterned electromagnetic environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available