4.7 Article

Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in South China

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-08941-3

Keywords

-

Funding

  1. National Natural Science Foundation of China [41888101, 41602119]
  2. Science and Technology Major Projects of PetroChina [2021yjcq02, 2021DJ2001]

Ask authors/readers for more resources

The Late Ordovician mass extinction is the second most severe biological crisis in Phanerozoic history. The cause of this event is still debated, but extensive volcanism and oceanic euxinia are believed to have played significant roles. Mercury geochemistry provides indirect evidence of intense volcanism, while the presence of euxinia suggests a lack of oxygen in the oceans. These environmental changes are likely responsible for the two pulses of the mass extinction event.
The Late Ordovician mass extinction (LOME, ca. 445 Ma; Hirnantian stage) is the second most severe biological crisis of the entire Phanerozoic. The LOME has been subdivided into two pulses (intervals), at the beginning and the ending of the Hirnantian glaciation, the LOMEI-1 and LOMEI-2, respectively. Although most studies suggest a rapid cooling and/or oceanic euxinia as major causes for this mass extinction, the driver of these environmental changes is still debated. As other Phanerozoic's mass extinctions, extensive volcanism may have been the potential trigger of the Hirnantian glaciation. Indirect evidence of intense volcanism comes from Hg geochemistry: peaks of Hg concentrations have been found before and during the LOME, and have all been attributed to global volcanism in origin. Here, we present high-resolution mercury (Hg) profiles in three study sections, from a shelf to slope transect, on the Yangtze Shelf Sea (South China) to address the origin of Hg anomalies across the Ordovician-Silurian (O-S) boundary. The results show Hg anomaly enrichments in the middle Katian, late Katian, the LOMEI-1 at the beginning of the Hirnantian glaciation, the LOMEI-2 in the late Hirnantian glaciation, and late Rhuddanian. The Hg anomaly enrichments during the middle-late Katian and late Rhuddanian would probably reflect a volcanic origin. We find two different controls on the recorded Hg anomalies during the extinction time: i.e., primarily volcanism for the Hg anomaly at the LOMEI-1 and euxinia for the Hg anomaly at the LOMEI-2. Expansion of euxinia at the LOMEI-1 would have been probably enhanced by volcanic fertilization via weathering of volcanic deposits during the Middle and late Katian, and combined with euxinia at the LOMEI-2 to finally be responsible for the two pulses of the LOME.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available