4.6 Article

Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser

Journal

OPTICAL MATERIALS EXPRESS
Volume 12, Issue 10, Pages 4047-4060

Publisher

Optica Publishing Group
DOI: 10.1364/OME.451585

Keywords

-

Funding

  1. Horizon 2020 Framework Programme [871330]
  2. Hellenic Foundation for Research and Innovation (2247 NEBULA project)

Ask authors/readers for more resources

In this work, a numerical study on a time-delayed reservoir computing scheme is presented, utilizing a quantum-dot spin polarized vertical cavity surface-emitting laser (QD s-VCSEL) as the single nonlinear node. The scheme exploits the complex temporal dynamics of multiple energy states in quantum dot materials and utilizes dual emission to enhance computational efficiency.
In this work, we present numerical results concerning a time-delayed reservoir computing scheme, where its single nonlinear node, is a quantum-dot spin polarized vertical cavity surface-emitting laser (QD s-VCSEL). The proposed photonic neuromorphic scheme exploits the complex temporal dynamics of multiple energy states present in quantum dot materials and uses emission from two discrete wavebands and two polarization states, so as to enhance computational efficiency. The benchmark task used for this architecture, is the equalization of a distorted 25Gbaud PAM-4 signal after 50Km of transmission at 1550 nm. Results confirm that although typical ground-state emitting quantum-dot nodes offer limited performance, due to bandwidth limitations; by exploiting dual emission, we achieved a one-hundred-fold improvement in bit-error rate. This performance boost can pave the way for the infiltration of quantum-dot based devices in high-speed demanding neuromorphic driven applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available