4.6 Article

Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box-Behnken Experimental Design

Journal

MATERIALS
Volume 15, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/ma15103591

Keywords

oral fast-dissolving film; maltodextrin; pullulan; propylene glycol; Zolmitriptan; drug delivery

Funding

  1. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) [81173005]
  2. National Natural Science Foundation in China

Ask authors/readers for more resources

Migraine treatment with oral fast-dissolving films (OFDFs) containing ZMT showed rapid dissolution and fast disintegration time, improving patient compliance and shortening the onset time of ZMT. The optimized formulation displayed excellent mechanical characteristics and enhanced drug release. This study offers a promising strategy for developing ZMT-OFDFs using the solvent casting method, with the potential to provide an auspicious alternative approach for migraine headache treatment.
Migraine is a neurological disorder characterized by severe headaches, visual aversions, auditory, and olfactory disorders, accompanied by nausea and vomiting. Zolmitriptan (ZMT (R)) is a potent 5HT1B/1D serotonin receptor agonist frequently used for the treatment of migraine. It has erratic absorption from the gastrointestinal tract (GIT), but its oral bioavailability is low (40-45%) due to the hepatic metabolism. This makes it an ideal candidate for oral fast dissolving formulations. Hence, the current study was undertaken to design and develop oral fast-dissolving films (OFDFs) containing ZMT for migraine treatment. The OFDFs were formulated by the solvent casting method (SCM) using Pullulan (PU) and maltodextrin (MDX) as film-forming agents and propylene glycol (PG) as a plasticizer. The strategy was designed using Box-Behnken experimental design considering the proportion of PU:MDX and percentage of PG as independent variables. The effectiveness of the OFDF's was measured based on the following responses: drug release at five min, disintegration time (D-time), and tensile strength (TS). The influence of formulation factors, including percent elongation (%E), thickness, water content, moisture absorption, and folding endurance on ZMT-OFDFs, were also studied. The results showed a successful fabrication of stable ZMT-OFDFs, with surface uniformity and amorphous shape of ZMT in fabricated films. The optimized formulation showed a remarkable rapid dissolution, over 90% within the first 5 min, a fast D-time of 18 s, and excellent mechanical characteristics. Improved maximum plasma concentration (C max) and area under the curve (AUC 0-t) in animals (rats) treated with ZMT-OFDFs compared to those treated with an intra-gastric (i-g) suspension of ZMT were also observed. Copolymer OFDFs with ZMT is an exciting proposition with great potential for the treatment of migraine headache. This study offers a promising strategy for developing ZMT-OFDFs using SCM. ZMT-OFDFs showed remarkable rapid dissolution and fast D-time, which might endeavor ZMT-OFDFs as an auspicious alternative approach to improve patient compliance and shorten the onset time of ZMT in migraine treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available