4.6 Article

Accelerated Aging of Epoxy Biocomposites Filled with Cellulose

Journal

MATERIALS
Volume 15, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ma15093256

Keywords

epoxy resin; cellulose; biocomposites; aging

Ask authors/readers for more resources

The presented research focuses on the mechanochemical modification of a snap-cure epoxy resin with the addition of cellulose for the production of a controlled-degradation material with potential application in rail transport. Various tests were conducted to evaluate the properties and performance of the cellulose-filled epoxy resin composites. The results showed that the addition of cellulose did not significantly affect the properties of the composites. This research aligns with the industry's pursuit of eco-friendly solutions and materials with a positive impact on the environment.
The presented research concerns the mechanochemical modification of a snap-cure type of epoxy resin, A.S. SET 1010, with the addition of different amounts of cellulose (0, 2, 5, 10, 15 and 20 per 100 resin), for a novel, controlled-degradation material with possible application in the production of passenger seats in rail transport. Composite samples were prepared on a hydraulic press in ac-cordance with the resin manufacturer's recommendations, in the form of tiles with dimensions of 80 x 80 x 1 mm. The prepared samples were subjected to thermo-oxidative aging and weathering for a period of 336 h. Changes in the color and surface defects in the investigated composites were evaluated using UV-Vis spectrophotometry (Cie-Lab). The degree of degradation by changes in the chemical structure of the samples was analyzed using FTIR/ATR spectroscopy. Differential scan-ning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed, and the sur-face energy of the samples was determined by measuring the contact angle of droplets. Tests were performed to determine changes in cellulose-filled epoxy resin composites after thermo-oxidative aging and weathering. It was found out that the addition of cellulose did not inflict sufficient changes to the properties within tested parameters. In the tested case, cellulose acted as a natural active biofiller. Our research is in line with the widespread pursuit of pro-ecological solutions in industry and the creation of materials with a positive impact on the natural environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available