4.6 Article

Functionally Graded Al2O3-CTZ Ceramics Fabricated by Spark Plasma Sintering

Journal

MATERIALS
Volume 15, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/ma15051860

Keywords

Al2O3-ZrO2 composite; functionally graded material; porosity

Funding

  1. Hungarian National Research Development and Innovation Office - European Union [VEKOP-2.3.2-16-2017-00013]
  2. State of Hungary
  3. European Regional Development Fund

Ask authors/readers for more resources

We investigated the fabrication of functionally graded Al2O3-CeO2-stabilized-ZrO2 (CTZ) ceramics using spark plasma sintering. The ceramics exhibited gradual changes in composition and porosity along the axial direction. The composition gradient was achieved by layering different starting powders, while the porosity gradient was induced by an asymmetric graphite tool configuration during sintering. The microhardness test showed a significant difference in hardness between the two opposite sides of the ceramics in the ASY samples, without any signs of delamination or cracking.
We studied the fabrication of functionally graded Al2O3-CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3-CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 mu m for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3-CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available