4.6 Article

Characterization of Fractal Structures by Spray Flame Synthesis Using X-ray Scattering

Journal

MATERIALS
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/ma15062124

Keywords

small-angle X-ray scattering (SAXS); nanoparticle characterization; fractal structures; spray flame synthesis (SFS); flame spray pyrolysis (FSP); metal oxides; zirconia

Funding

  1. German Research Foundation (DFG) [NI 414/30-1, NI 414/30-2, SPP 1980]

Ask authors/readers for more resources

This work investigates the complex particle structures made by spray flame synthesis. The influence of precursor concentration on the fractal structures of zirconia nanoparticles is analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The results show that unstable process conditions are identified at low precursor concentrations, resulting in a broad size distribution of primary particles with rough surfaces. Higher precursor concentrations lead to reproducible primary particle sizes almost independent of the initial precursor concentration. In addition, the typical shape of aggregates for aerosols is present for the investigated range of precursor concentrations.
In this work, we take on an in-depth characterization of the complex particle structures made by spray flame synthesis. Because of the resulting hierarchical aggregates, very few measurement techniques are available to analyze their primary particle and fractal properties. Therefore, we use small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) to investigate the influence of the precursor concentration on the fractal structures of zirconia nanoparticles. The combination of information gained from these measurement results leads to a detailed description of the particle system, including the polydispersity and size distribution of the primary particles. Based on our findings, unstable process conditions could be identified at low precursor concentrations resulting in the broadest size distribution of primary particles with rough surfaces. Higher precursor concentrations lead to reproducible primary particle sizes almost independent of the initial precursor concentration. Regarding the fractal properties, the typical shape of aggregates for aerosols is present for the investigated range of precursor concentrations. In conclusion, the consistent results for SAXS and TEM show a conclusive characterization of a complex particle system, allowing for the identification of the underlying particle formation mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available