4.4 Article

Effects of mixed-based biochar on water infiltration and evaporation in aeolian sand soil

Journal

JOURNAL OF ARID LAND
Volume 14, Issue 4, Pages 374-389

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s40333-022-0060-6

Keywords

biochar; water infiltration; water evaporation; aeolian sand soil; mining areas

Funding

  1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining
  2. Open Foundation Ecological Self-Repair Mechanism and Promotion Technology in Shendong Mining Area, China [GJNY-18-73.19]
  3. National Key Research and Development Program of China [2020YFC1806502]

Ask authors/readers for more resources

This study aimed to find a suitable biochar application method to improve water infiltration and reduce water evaporation in aeolian sandy soil. The results showed that the application of mixed-based biochar significantly reduced cumulative soil water infiltration and evaporation. The application amount and particle size had an impact on the migration speed of the wetting front. Among the different application patterns, pattern A resulted in the lowest cumulative soil water infiltration. Additionally, the application of mixed-based biochar reduced cumulative soil water evaporation, with pattern C and smaller particle size showing better results.
Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity. This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil. Using the indoor soil column method, we studied the effects of three application patterns (A (0-20 cm was a mixed sample of mixed-based biochar and soil), B (0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil), and C (0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)), four application amounts (0% (control, CK), 1%, 2%, and 4% of mixed-based biochar in dry soil), and two particle sizes (0.05-0.25 mm (S1) and <0.05 mm (S2)) of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil. We separately used five infiltration models (the Philip, Kostiakov, Horton, USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service), and Kostiakov-Lewis models) to fit cumulative infiltration and time. Compared with CK, the application of mixed-based biochar significantly reduced cumulative soil water infiltration. Under application patterns A, B, and C, the higher the application amount and the finer the particle size were, the lower the migration speed of the wetting front. With the same application amount, cumulative soil water infiltration under application pattern A was the lowest. Taking infiltration for 10 min as an example, the reductions of cumulative soil water infiltration under the treatments of A2%((S2)), A4%((S1)), A4%((S2)), A1%((S1)), C2%((S1)), and B1%((S1)) were higher than 30%, which met the requirements of loess soil hydraulic parameters suitable for plant growth. The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size (R-2>0.980), but the R-2 values of the Horton model exceeded 0.990 for all treatments (except for the treatment B2%((S2))). Compared with CK, all other treatments reduced cumulative soil water infiltration, except for B4%((S2)). With the same application amount, cumulative soil water evaporation difference between application patterns A and B was small. Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation. The reductions in cumulative soil water evaporation under the treatments of C4%((S1)), C4%((S2)), C2%((S1)), and C2%((S2)) were over 15.00%. Therefore, applying 2% of mixed-based biochar with S1 particle size to the underlying layer (10-20 cm) could improve soil water infiltration while minimizing soil water evaporation. Moreover, application pattern was the main factor affecting soil water infiltration and evaporation. Further, there were interactions among the three influencing factors in the infiltration process (application amountxparticle size with the most important interaction), while there were no interactions among them in the evaporation process. The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available