4.6 Review

Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 15, Issue 5, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.arabjc.2022.103743

Keywords

Chitosan; Adsorption; Pharmaceutical residue; Ionic form; Mechanism

Ask authors/readers for more resources

This article provides a comprehensive overview of recent research on the removal of antibiotics by chitosan composite-based adsorbents. The structure, optimal removal conditions, and adsorption mechanisms of various antibiotics are summarized. The development of chitosan composite-based adsorbents and the factors influencing the adsorption process are discussed. Conclusions and future recommendations are also provided.
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and kmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interac tions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available