4.8 Editorial Material

Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy

Janis Timoshenko et al.

Summary: X-ray absorption spectroscopy (XAS) is a crucial method for investigating the structure and composition of heterogeneous catalysts, revealing the nature of active sites and establishing links between structural motifs, local electronic structure, and catalytic properties. Recent advancements in instrumentation and data analysis approaches for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra have been discussed, with emphasis on applications in the field of heterogeneous catalysis, particularly in electrocatalysis.

CHEMICAL REVIEWS (2021)

Article Chemistry, Physical

Solar-Driven Electrochemical CO2Reduction with Heterogeneous Catalysts

Charles E. Creissen et al.

Summary: Research in solar-driven electrochemical CO(2) reduction focuses on devices incorporating heterogeneous catalysts operating under bias-free aqueous conditions, with the best-performing PEC systems featuring integrated photoelectrodes and protective layers while PV-EC cells utilizing gas-fed flow cell technology show the highest overall performances in terms of current density and solar-to-carbon efficiency.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Operando Methods in Electrocatalysis

Yao Yang et al.

Summary: Electrocatalysis is crucial for advancing renewable energy technologies, and understanding the structure and reaction mechanisms of electrocatalysts at electrode-electrolyte interfaces is fundamental. In situ and operando techniques, such as operando synchrotron-based X-ray techniques and in situ atomic-scale scanning transmission electron microscopy, provide valuable insights into the interfacial structural and compositional changes under reaction conditions, aiding in the study of charge transfer kinetics and reaction mechanisms. The continuous development of these techniques will contribute significantly to establishing structure/composition-reactivity correlations of electrocatalysts at unprecedented atomic-scale and molecular levels under realistic, real-time reaction conditions.

ACS CATALYSIS (2021)

Review Chemistry, Physical

Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts

Dilan Karapinar et al.

Summary: This Review highlights the importance and challenges of electrochemical CO2 reduction for ethanol production, categorizing and evaluating the performance of copper-based catalysts to aid in the design of more efficient catalysts for selective ethanol formation.

ACS ENERGY LETTERS (2021)

Review Chemistry, Physical

Structure Sensitivity in Single-Atom Catalysis toward CO2 Electroreduction

Dunfeng Gao et al.

Summary: This paper discusses the activity and selectivity of single-atom catalysts (SACs) in the electrocatalytic CO2 reduction reaction (CO2RR) and the influence of structure on these factors, emphasizing the importance of dynamic structural evolution and active sites. The unique role of SACs in tandem CO2RR catalysis is also explored.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Highly Selective CO2 Electroreduction to C2H4 Using a Metal-Organic Framework with Dual Active Sites

Xiao-Feng Qiu et al.

Summary: In this study, a metal-organic framework (PcCu-Cu-O) was reported as an electrocatalyst for converting CO2 to C2H4, showing higher efficiency compared to discrete molecular copper-phthalocyanine. In-situ infrared spectroscopy and control experiments indicated that the synergistic effect between the CuPc unit and the CuO4 unit contributes to lowering the energy barrier for C-C dimerization.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly

Yi Xu et al.

Summary: In this study, the authors investigate the electrochemical conversion of carbon dioxide to methane and develop a moderator strategy to maintain the catalyst in a low coordination state, enabling stable and selective electrochemical methanation.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

General synthesis of single-atom catalysts with high metal loading using graphene quantum dots

Chuan Xia et al.

Summary: A general method was reported for synthesizing single-atom catalysts with high transition-metal-atom loadings, showing significant improvements compared to benchmarks in the literature. The use of graphene quantum dots interwoven into a carbon matrix provided anchoring sites for high densities of transition-metal atoms without aggregation. An increase in activity was demonstrated in electrochemical CO2 reduction on a Ni single-atom catalyst with increased Ni loading.

NATURE CHEMISTRY (2021)

Article Chemistry, Physical

Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO2 Electroreduction to CO

Jingkun Li et al.

Summary: The electrochemical reduction of CO2 using renewable energy is effective in achieving carbon neutrality. The study found that Co/N-C exhibits the highest activity for CO production, while Ni/N-C shows both activity and selectivity. The superior performance of Fe, Co, and Ni/N-C is attributed to phase contraction and HCO3- insertion into metal hydroxide structures.

ACS CATALYSIS (2021)

Article Chemistry, Physical

Boosting CO2 Electroreduction to CH4 via Tuning Neighboring Single-Copper Sites

Anxiang Guan et al.

ACS ENERGY LETTERS (2020)

Article Multidisciplinary Sciences

Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon

Kun Zhao et al.

NATURE COMMUNICATIONS (2020)

Editorial Material Multidisciplinary Sciences

Single atom catalysis: a decade of stunning progress and the promise for a bright future

Sharon Mitchell et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Physical

In Situ/Operando Techniques for Characterization of Single-Atom Catalysts

Xuning Li et al.

ACS CATALYSIS (2019)

Article Chemistry, Physical

Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts

Ana Sofia Varela et al.

ACS CATALYSIS (2019)

Article Multidisciplinary Sciences

Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction

Zhe Weng et al.

NATURE COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters

Qing Tang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Review Chemistry, Multidisciplinary

Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2

Noemie Elgrishi et al.

CHEMICAL SOCIETY REVIEWS (2017)

Article Chemistry, Physical

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide

Ruud Kortlever et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2015)

Article Chemistry, Physical

From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid

Tran Ngoc Huan et al.

JOURNAL OF MATERIALS CHEMISTRY A (2015)

Article Chemistry, Physical

A Janus cobalt-based catalytic material for electro-splitting of water

Saioa Cobo et al.

NATURE MATERIALS (2012)

Article Chemistry, Multidisciplinary

Single-atom catalysis of CO oxidation using Pt1/FeOx

Botao Qiao et al.

NATURE CHEMISTRY (2011)