4.8 Article

Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-30127-8

Keywords

-

Funding

  1. MacDiarmid Institute of New Zealand
  2. Marsden Fund of NZ
  3. Royal Society of New Zealand
  4. ARC Centre of Excellence in Exciton Science [CE170100026]

Ask authors/readers for more resources

Organic photovoltaics (OPVs) offer cheap and flexible solar energy. The authors demonstrate that in films made of the small molecule Y6, light can directly generate free charges instead of excitons, challenging the current understanding of how OPVs work.
Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which - unlike previous organic semiconductors - have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60-90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs. When light hits organic semiconductors, bound charge pairs, called excitons, are usually produced. Here, the authors show that in the best performing organic solar material to date, free charges, rather than excitons, are directly created by light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available