4.7 Article

p63, a key regulator of Ago2, links to the microRNA-144 cluster

Journal

CELL DEATH & DISEASE
Volume 13, Issue 4, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41419-022-04854-1

Keywords

-

Categories

Funding

  1. Women & Children's Health Research Institute (WCHRI)
  2. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

The study reveals that p63 isoforms physically interact with and stabilize Ago2, thereby regulating its dual functions in tumor progression. MiR-144 activates p63 by directly targeting p63's E3 ligase Itch, enhancing its tumor suppressor function and inhibiting cell invasion.
As a key component of the RNA-induced silencing complex (RISC), Argonaute2 (Ago2) exhibits a dual function regulatory role in tumor progression. However, the mechanistic basis of differential regulation remains elusive. p63 is a homolog of the tumor suppressor p53. p63 isoforms play a critical role in tumorigenesis and metastasis. Herein, we show that p63 isoforms physically interact with and stabilize Ago2. Expression of p63 isoforms increases the levels of Ago2 protein, while depletion of p63 isoforms by shRNA decreases Ago2 protein levels. p63 strongly guides Ago2 dual functions in vitro and in vivo. Ectopic expression of the miR-144/451 cluster increases p63 protein levels; TAp63 transactivates the miR-144/451 cluster, forming a positive feedback loop. Notably, miR-144 activates p63 by directly targeting Itch, an E3 ligase of p63. Ectopic expression of miR-144 induces apoptosis in H1299 cells. miR-144 enhances TAp63 tumor suppressor function and inhibits cell invasion. Our findings uncover a novel function of p63 linking the miRNA-144 cluster and the Ago2 pathway. Facts and questions Identification of Ago2 as a p63 target. Ago2 exhibits a dual function regulatory role in tumor progression; however, the molecular mechanism of Ago2 regulation remains unknown. p63 strongly guides Ago2 dual functions in vitro and in vivo. Unraveling a novel function of p63 links the miRNA-144 cluster and the Ago2 pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available